Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 31, 2026
-
Free, publicly-accessible full text available August 1, 2026
-
Free, publicly-accessible full text available September 1, 2026
-
Abstract Sustaining biodiversity requires measuring the interacting spatial and temporal processes by which environmental factors shape wildlife community assembly. Declines in bird communities due to urban development and changing climate conditions are widely documented. However, the combined impacts of multiple environmental stressors on biodiversity remain unclear, especially in urbanized desert ecosystems. This is largely due to a lack of data at the scales necessary for predicting the consequences of environmental change for diverse species and functional groups, particularly those that provide ecosystem services such as seed dispersal, pest control, and pollination. Trends in the prevalence and diversity of different functional groups contribute to understanding how changes in bird communities impact well‐being through the lens of ecosystem services. Across the rapidly developing drylands of the metropolitan Phoenix, Arizona, USA, we ask the following question: How have inter‐ and intra‐annual landscape changes associated with urbanization and climate shaped the dynamic characteristics of bird communities, specifically the abundance and richness of species and their functional groups? We analyzed long‐term drivers of bird communities by combining a two‐decade, multi‐season spatial dataset of environmental conditions (urbanization, vegetation, temperature, etc.) with biotic data (species richness and abundance) collected seasonally during the same time periods (winter and spring; 2001–2016). Results show that increased impervious surface area and land surface temperature were negatively associated with overall bird abundance and species richness across the study period, especially during winter. However, these relationships varied among functional groups, with potentially mixed outcomes for ecosystem services and disservices provided by urban biodiversity. By improving knowledge of long‐term trends in multiple environmental drivers that shape wildlife community dynamics, these results facilitate effective evaluation of how landscape management practices in drylands influence the outcomes of evolving human‐wildlife relationships.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Free, publicly-accessible full text available May 1, 2026
-
Connectivity is crucial for species conservation, but most assessments define connectivity solely in terms of protected or natural areas and land covers without regard for the underlying thermal environment. As climate change accelerates, it is becoming increasingly important to not only assess land use and land cover changes (LULCC) but also how surface temperatures are evolving and creating more fragmented thermal refuges over time. This research investigates how the surface thermal environment has changed over time in Phoenix, Arizona, USA, a desert city in the southwestern United States, and how the spatial patterns of cooler refuges within the heat landscape, or “heatscape,” may be affecting wildlife habitat availability alongside LULCC. We quantify the structural and functional connectivity of thermal refuges using a suite of connectivity metrics from landscape ecology to demonstrate how the spatial distribution and configuration of these critical areas has changed over the last 35 years and what the implications are for the many wildlife species living in this desert environment. Results show that thermal refuge patches have been shrinking and becoming more fragmented over the past 35 years, with connectivity also declining over the same period. A key inflection point was identified in 2000, when the probability that cooler refuges patches were connected dropped to nearly zero, and it has remained at that low level ever since. These shifts in connectivity are tightly coupled with LULCC in the study area, particularly the loss of irrigated agriculture as it has been replaced by residential and other developed land uses over time. Decreasing water security in the region also threatens to reduce the availability of cooler patches and, simultaneously, the connectivity of those refuges. Introducing cooler patches through engineered materials or artificial shade may help offset some of the losses from irrigated lands. The findings offer a perspective for conservation research with implications for advancing a more formal thermal landscape ecology for understanding and improving the relationship between spatial thermal patterns and ecological processes.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Abstract Urban informatics appears to be a suitable area for the application of digital twins. Definitions of the term share some characteristics, but these definitions do not agree on what exactly constitutes a digital twin. The term has the potential to be misleading unless adequate attention is paid to the inherent uncertainty in any replica of a real system. The question of uncertainty is addressed, together with some of the issues that make its quantification problematic. Digital twins for urban informatics pose questions of purpose, governance, and ethics. In the final section the paper suggests some research issues that will need to be addressed if digital twins are to be successful.more » « lessFree, publicly-accessible full text available December 1, 2025
-
ABSTRACT GIS and GIScience education have continually evolved over the past three decades, responding to technological advances and societal issues. Today, the content and context in which GIScience is taught continue to be impacted by these disruptions, notably from technology through artificial intelligence (AI) and society through the myriad environmental and social challenges facing the planet. These disruptions create a new landscape for training within the discipline that is affecting not onlywhatis taught in GIScience courses but alsowhois taught,whyit is being taught, andhowit is taught. The aim of this paper is to structure a direction for developing and delivering GIScience education that, amid these disruptions, can generate a capable workforce and the next generation of leaders for the discipline. We present a framework for understanding the various emphases of GIScience education and use it to discuss how the content, audience, and purpose are changing. We then discuss how pedagogical strategies and practices can change how GIScience concepts and skills are taught to train more creative, inclusive, and empathetic learners. Specifically, we focus on how GIScience pedagogy should (1) center on problem‐based learning, (2) be open and accelerate open science, and (3) cultivate ethical reasoning and practices. We conclude with remarks on how the principles of GIScience education can extend beyond disciplinary boundaries for holistic spatial training across academia.more » « lessFree, publicly-accessible full text available April 1, 2026
An official website of the United States government
